File manager - Edit - /usr/local/lib/python3.9/dist-packages/pandas/_libs/tslibs/vectorized.pyi
Back
""" For cython types that cannot be represented precisely, closest-available python equivalents are used, and the precise types kept as adjacent comments. """ from datetime import tzinfo import numpy as np from pandas._libs.tslibs.dtypes import Resolution from pandas._typing import npt def dt64arr_to_periodarr( stamps: npt.NDArray[np.int64], freq: int, tz: tzinfo | None, reso: int = ..., # NPY_DATETIMEUNIT ) -> npt.NDArray[np.int64]: ... def is_date_array_normalized( stamps: npt.NDArray[np.int64], tz: tzinfo | None, reso: int, # NPY_DATETIMEUNIT ) -> bool: ... def normalize_i8_timestamps( stamps: npt.NDArray[np.int64], tz: tzinfo | None, reso: int, # NPY_DATETIMEUNIT ) -> npt.NDArray[np.int64]: ... def get_resolution( stamps: npt.NDArray[np.int64], tz: tzinfo | None = ..., reso: int = ..., # NPY_DATETIMEUNIT ) -> Resolution: ... def ints_to_pydatetime( stamps: npt.NDArray[np.int64], tz: tzinfo | None = ..., box: str = ..., reso: int = ..., # NPY_DATETIMEUNIT ) -> npt.NDArray[np.object_]: ... def tz_convert_from_utc( stamps: npt.NDArray[np.int64], tz: tzinfo | None, reso: int = ..., # NPY_DATETIMEUNIT ) -> npt.NDArray[np.int64]: ...
| ver. 1.4 |
Github
|
.
| PHP 7.4.33 | Generation time: 0.43 |
proxy
|
phpinfo
|
Settings