File manager - Edit - /usr/local/lib/python3.9/dist-packages/sklearn/decomposition/tests/test_fastica.py
Back
""" Test the fastica algorithm. """ import itertools import os import warnings import numpy as np import pytest from scipy import stats from sklearn.decomposition import PCA, FastICA, fastica from sklearn.decomposition._fastica import _gs_decorrelation from sklearn.exceptions import ConvergenceWarning from sklearn.utils._testing import assert_allclose, ignore_warnings def center_and_norm(x, axis=-1): """Centers and norms x **in place** Parameters ----------- x: ndarray Array with an axis of observations (statistical units) measured on random variables. axis: int, optional Axis along which the mean and variance are calculated. """ x = np.rollaxis(x, axis) x -= x.mean(axis=0) x /= x.std(axis=0) def test_gs(): # Test gram schmidt orthonormalization # generate a random orthogonal matrix rng = np.random.RandomState(0) W, _, _ = np.linalg.svd(rng.randn(10, 10)) w = rng.randn(10) _gs_decorrelation(w, W, 10) assert (w**2).sum() < 1.0e-10 w = rng.randn(10) u = _gs_decorrelation(w, W, 5) tmp = np.dot(u, W.T) assert (tmp[:5] ** 2).sum() < 1.0e-10 def test_fastica_attributes_dtypes(global_dtype): rng = np.random.RandomState(0) X = rng.random_sample((100, 10)).astype(global_dtype, copy=False) fica = FastICA( n_components=5, max_iter=1000, whiten="unit-variance", random_state=0 ).fit(X) assert fica.components_.dtype == global_dtype assert fica.mixing_.dtype == global_dtype assert fica.mean_.dtype == global_dtype assert fica.whitening_.dtype == global_dtype def test_fastica_return_dtypes(global_dtype): rng = np.random.RandomState(0) X = rng.random_sample((100, 10)).astype(global_dtype, copy=False) k_, mixing_, s_ = fastica( X, max_iter=1000, whiten="unit-variance", random_state=rng ) assert k_.dtype == global_dtype assert mixing_.dtype == global_dtype assert s_.dtype == global_dtype @pytest.mark.parametrize("add_noise", [True, False]) def test_fastica_simple(add_noise, global_random_seed, global_dtype): if ( global_random_seed == 20 and global_dtype == np.float32 and not add_noise and os.getenv("DISTRIB") == "ubuntu" ): pytest.xfail( "FastICA instability with Ubuntu Atlas build with float32 " "global_dtype. For more details, see " "https://github.com/scikit-learn/scikit-learn/issues/24131#issuecomment-1208091119" # noqa ) # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(global_random_seed) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples, random_state=global_random_seed) s = np.c_[s1, s2].T center_and_norm(s) s = s.astype(global_dtype) s1, s2 = s # Mixing angle phi = 0.6 mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) mixing = mixing.astype(global_dtype) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) # function as fun arg def g_test(x): return x**3, (3 * x**2).mean(axis=-1) algos = ["parallel", "deflation"] nls = ["logcosh", "exp", "cube", g_test] whitening = ["arbitrary-variance", "unit-variance", False] for algo, nl, whiten in itertools.product(algos, nls, whitening): if whiten: k_, mixing_, s_ = fastica( m.T, fun=nl, whiten=whiten, algorithm=algo, random_state=rng ) with pytest.raises(ValueError): fastica(m.T, fun=np.tanh, whiten=whiten, algorithm=algo) else: pca = PCA(n_components=2, whiten=True, random_state=rng) X = pca.fit_transform(m.T) k_, mixing_, s_ = fastica( X, fun=nl, algorithm=algo, whiten=False, random_state=rng ) with pytest.raises(ValueError): fastica(X, fun=np.tanh, algorithm=algo) s_ = s_.T # Check that the mixing model described in the docstring holds: if whiten: # XXX: exact reconstruction to standard relative tolerance is not # possible. This is probably expected when add_noise is True but we # also need a non-trivial atol in float32 when add_noise is False. # # Note that the 2 sources are non-Gaussian in this test. atol = 1e-5 if global_dtype == np.float32 else 0 assert_allclose(np.dot(np.dot(mixing_, k_), m), s_, atol=atol) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-2) assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-2) else: assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-1) assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-1) # Test FastICA class _, _, sources_fun = fastica( m.T, fun=nl, algorithm=algo, random_state=global_random_seed ) ica = FastICA(fun=nl, algorithm=algo, random_state=global_random_seed) sources = ica.fit_transform(m.T) assert ica.components_.shape == (2, 2) assert sources.shape == (1000, 2) assert_allclose(sources_fun, sources) # Set atol to account for the different magnitudes of the elements in sources # (from 1e-4 to 1e1). atol = np.max(np.abs(sources)) * (1e-5 if global_dtype == np.float32 else 1e-7) assert_allclose(sources, ica.transform(m.T), atol=atol) assert ica.mixing_.shape == (2, 2) ica = FastICA(fun=np.tanh, algorithm=algo) with pytest.raises(ValueError): ica.fit(m.T) def test_fastica_nowhiten(): m = [[0, 1], [1, 0]] # test for issue #697 ica = FastICA(n_components=1, whiten=False, random_state=0) warn_msg = "Ignoring n_components with whiten=False." with pytest.warns(UserWarning, match=warn_msg): ica.fit(m) assert hasattr(ica, "mixing_") def test_fastica_convergence_fail(): # Test the FastICA algorithm on very simple data # (see test_non_square_fastica). # Ensure a ConvergenceWarning raised if the tolerance is sufficiently low. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) # Do fastICA with tolerance 0. to ensure failing convergence warn_msg = ( "FastICA did not converge. Consider increasing tolerance " "or the maximum number of iterations." ) with pytest.warns(ConvergenceWarning, match=warn_msg): ica = FastICA( algorithm="parallel", n_components=2, random_state=rng, max_iter=2, tol=0.0 ) ica.fit(m.T) @pytest.mark.parametrize("add_noise", [True, False]) def test_non_square_fastica(add_noise): # Test the FastICA algorithm on very simple data. rng = np.random.RandomState(0) n_samples = 1000 # Generate two sources: t = np.linspace(0, 100, n_samples) s1 = np.sin(t) s2 = np.ceil(np.sin(np.pi * t)) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing matrix mixing = rng.randn(6, 2) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(6, n_samples) center_and_norm(m) k_, mixing_, s_ = fastica( m.T, n_components=2, whiten="unit-variance", random_state=rng ) s_ = s_.T # Check that the mixing model described in the docstring holds: assert_allclose(s_, np.dot(np.dot(mixing_, k_), m)) center_and_norm(s_) s1_, s2_ = s_ # Check to see if the sources have been estimated # in the wrong order if abs(np.dot(s1_, s2)) > abs(np.dot(s1_, s1)): s2_, s1_ = s_ s1_ *= np.sign(np.dot(s1_, s1)) s2_ *= np.sign(np.dot(s2_, s2)) # Check that we have estimated the original sources if not add_noise: assert_allclose(np.dot(s1_, s1) / n_samples, 1, atol=1e-3) assert_allclose(np.dot(s2_, s2) / n_samples, 1, atol=1e-3) def test_fit_transform(global_random_seed, global_dtype): """Test unit variance of transformed data using FastICA algorithm. Check that `fit_transform` gives the same result as applying `fit` and then `transform`. Bug #13056 """ # multivariate uniform data in [0, 1] rng = np.random.RandomState(global_random_seed) X = rng.random_sample((100, 10)).astype(global_dtype) max_iter = 300 for whiten, n_components in [["unit-variance", 5], [False, None]]: n_components_ = n_components if n_components is not None else X.shape[1] ica = FastICA( n_components=n_components, max_iter=max_iter, whiten=whiten, random_state=0 ) with warnings.catch_warnings(): # make sure that numerical errors do not cause sqrt of negative # values warnings.simplefilter("error", RuntimeWarning) # XXX: for some seeds, the model does not converge. # However this is not what we test here. warnings.simplefilter("ignore", ConvergenceWarning) Xt = ica.fit_transform(X) assert ica.components_.shape == (n_components_, 10) assert Xt.shape == (X.shape[0], n_components_) ica2 = FastICA( n_components=n_components, max_iter=max_iter, whiten=whiten, random_state=0 ) with warnings.catch_warnings(): # make sure that numerical errors do not cause sqrt of negative # values warnings.simplefilter("error", RuntimeWarning) warnings.simplefilter("ignore", ConvergenceWarning) ica2.fit(X) assert ica2.components_.shape == (n_components_, 10) Xt2 = ica2.transform(X) # XXX: we have to set atol for this test to pass for all seeds when # fitting with float32 data. Is this revealing a bug? if global_dtype: atol = np.abs(Xt2).mean() / 1e6 else: atol = 0.0 # the default rtol is enough for float64 data assert_allclose(Xt, Xt2, atol=atol) @pytest.mark.filterwarnings("ignore:Ignoring n_components with whiten=False.") @pytest.mark.parametrize( "whiten, n_components, expected_mixing_shape", [ ("arbitrary-variance", 5, (10, 5)), ("arbitrary-variance", 10, (10, 10)), ("unit-variance", 5, (10, 5)), ("unit-variance", 10, (10, 10)), (False, 5, (10, 10)), (False, 10, (10, 10)), ], ) def test_inverse_transform( whiten, n_components, expected_mixing_shape, global_random_seed, global_dtype ): # Test FastICA.inverse_transform n_samples = 100 rng = np.random.RandomState(global_random_seed) X = rng.random_sample((n_samples, 10)).astype(global_dtype) ica = FastICA(n_components=n_components, random_state=rng, whiten=whiten) with warnings.catch_warnings(): # For some dataset (depending on the value of global_dtype) the model # can fail to converge but this should not impact the definition of # a valid inverse transform. warnings.simplefilter("ignore", ConvergenceWarning) Xt = ica.fit_transform(X) assert ica.mixing_.shape == expected_mixing_shape X2 = ica.inverse_transform(Xt) assert X.shape == X2.shape # reversibility test in non-reduction case if n_components == X.shape[1]: # XXX: we have to set atol for this test to pass for all seeds when # fitting with float32 data. Is this revealing a bug? if global_dtype: # XXX: dividing by a smaller number makes # tests fail for some seeds. atol = np.abs(X2).mean() / 1e5 else: atol = 0.0 # the default rtol is enough for float64 data assert_allclose(X, X2, atol=atol) def test_fastica_errors(): n_features = 3 n_samples = 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) w_init = rng.randn(n_features + 1, n_features + 1) with pytest.raises(ValueError, match=r"alpha must be in \[1,2\]"): fastica(X, fun_args={"alpha": 0}) with pytest.raises( ValueError, match="w_init has invalid shape.+" r"should be \(3L?, 3L?\)" ): fastica(X, w_init=w_init) def test_fastica_whiten_unit_variance(): """Test unit variance of transformed data using FastICA algorithm. Bug #13056 """ rng = np.random.RandomState(0) X = rng.random_sample((100, 10)) n_components = X.shape[1] ica = FastICA(n_components=n_components, whiten="unit-variance", random_state=0) Xt = ica.fit_transform(X) assert np.var(Xt) == pytest.approx(1.0) @pytest.mark.parametrize("whiten", ["arbitrary-variance", "unit-variance", False]) @pytest.mark.parametrize("return_X_mean", [True, False]) @pytest.mark.parametrize("return_n_iter", [True, False]) def test_fastica_output_shape(whiten, return_X_mean, return_n_iter): n_features = 3 n_samples = 10 rng = np.random.RandomState(0) X = rng.random_sample((n_samples, n_features)) expected_len = 3 + return_X_mean + return_n_iter out = fastica( X, whiten=whiten, return_n_iter=return_n_iter, return_X_mean=return_X_mean ) assert len(out) == expected_len if not whiten: assert out[0] is None @pytest.mark.parametrize("add_noise", [True, False]) def test_fastica_simple_different_solvers(add_noise, global_random_seed): """Test FastICA is consistent between whiten_solvers.""" rng = np.random.RandomState(global_random_seed) n_samples = 1000 # Generate two sources: s1 = (2 * np.sin(np.linspace(0, 100, n_samples)) > 0) - 1 s2 = stats.t.rvs(1, size=n_samples, random_state=rng) s = np.c_[s1, s2].T center_and_norm(s) s1, s2 = s # Mixing angle phi = rng.rand() * 2 * np.pi mixing = np.array([[np.cos(phi), np.sin(phi)], [np.sin(phi), -np.cos(phi)]]) m = np.dot(mixing, s) if add_noise: m += 0.1 * rng.randn(2, 1000) center_and_norm(m) outs = {} for solver in ("svd", "eigh"): ica = FastICA(random_state=0, whiten="unit-variance", whiten_solver=solver) sources = ica.fit_transform(m.T) outs[solver] = sources assert ica.components_.shape == (2, 2) assert sources.shape == (1000, 2) # compared numbers are not all on the same magnitude. Using a small atol to # make the test less brittle assert_allclose(outs["eigh"], outs["svd"], atol=1e-12) def test_fastica_eigh_low_rank_warning(global_random_seed): """Test FastICA eigh solver raises warning for low-rank data.""" rng = np.random.RandomState(global_random_seed) A = rng.randn(10, 2) X = A @ A.T ica = FastICA(random_state=0, whiten="unit-variance", whiten_solver="eigh") msg = "There are some small singular values" with pytest.warns(UserWarning, match=msg): with ignore_warnings(category=ConvergenceWarning): # The FastICA solver may not converge for some data with specific # random seeds but this happens after the whiten step so this is # not want we want to test here. ica.fit(X)
| ver. 1.4 |
Github
|
.
| PHP 7.4.33 | Generation time: 0.51 |
proxy
|
phpinfo
|
Settings